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ABSTRACT

I explore the use of artificial intelligence (Al), specifically Bayesian optimization techniques across a
variety of domains. I discuss the conditions under which machine and deep learning methods are
most successful in discovering underlying relationships, as well as applications that are well-suited
for Bayesian-Al treatment. I also discuss the importance of domain-specific knowledge and the need
for data preprocessing and cleaning in order to achieve the best results.
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1 Introduction

Artificial Intelligence (Al) is an interdisciplinary field that generally leverages the tools of statistics, mathematics,
computer science, and subject-specific domain knowledge (among other tools) to reveal underlying relationships
between control attributes (i.e., input features) and predictive outputs (i.e., output targets) in light of provided examples
(i.e., based on data). Some of the conditions that are most fortuitous for the success of the data scientific method in
discovering underlying relationships include (Tan et al., 2018):

* data sets that are rid of defects, such as transcription errors, measurement errors, outliers, missing values, and
inconsistencies;

* data sets in which the experimental output measurement values are large in comparison to the stochastic
fluctuation scale associated with observation (i.e., low noise / high reliability);

* data sets that contain sufficient observations to exhaustively span the relevant input space that will be analyzed
and/or optimized;

* data sets that are representative of the underlying relationship (i.e., data sets that do not suffer from sampling
bias);

* data sets comprised of experiments that are independent and identically distributed (i.e., there are no differences
in the experimental environment under which each experiment is undertaken);

 underlying relationships that are constant in time (i.e., the underlying patterns are not dominated by time-
dependent systematics associated with data collection time but rather reflect a genuine relationship between
inputs and outputs);

* underlying relationships in which the outputs are determined by only a few input features (i.e., low dimension-
ality);

* underlying relationships in which the outputs are simple transformations of their determinative input features
(e.g., linear functions of the control attributes);
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* underlying relationships in which the outputs are simple transformations of transformed representations of
their determinative input features (e.g., linear functions of the exponential of one or more control attributes);
and

* underlying relationships in which the functional forms of the relationships are known a priori (e.g., from the
laws of physics, chemistry, or biology; empirical relationships observed in the fields of sociology, psychology,
Or economics).

In practice, no Al application fulfills all of these conditions perfectly; the extent to which these conditions are violated
ultimately affects the efficacy of the data scientific method in revealing the underlying relationships present in the data.
Even in applications in which one or more conditions are strongly violated, however, the situation can often be salvaged
by compensation along the other conditions (e.g., applications involving high dimensional, nonlinear relationships can
still be revealed via increased numbers of low-noise observations).

Beyond the abstract conditions under which the data scientific method can be expected to be leveraged successfully,
however, a separate matter is the kind of application that is well-poised for a data scientific treatment. Although it is
difficult to be precise and exhaustive, some desiderata for promising Al applications include:

* Leverageable domain knowledge specific to the particular application Application-specific knowledge
may support Al approaches at all stages of modeling and optimization, including during the course of
data acquisition (e.g., guiding the selection of sampled data points, determining the extent of the sampling
hypervolume, incorporating known correlations between inputs and/or outputs during the initial sampling
stage), data preprocessing / data cleaning (e.g., identifying the presence of transcription errors, outliers, and
experimental failure modes), feature engineering (e.g., identifying exhaustive and non-redundant control
attributes; identifying relevant control conditions, including appropriate metadata), model selection (e.g.,
invoking a parametric functional form derived from laws of nature or observed scaling relations), model
training (e.g., favoring and/or constraining models to reflect known causal relationships; enforcing that similar
data points, i.e., data points that are “close” under a measure of input attribute distance and/or belong to the
same cluster according to the underlying data generating process, are mapped to similar output target values),
and optimization (e.g., specifying the quantitative form of an objective function in order to rank candidate data
points according to their estimated utility under a model) (Childs and Washburn, [2019).

* Availability of a high quality data set As discussed above, the quality of a data set is multi-faceted and
includes aspects such as the number of independent data points collected (in particular, in relation to the
number of model parameters to be fit and the complexity of the underlying patterns that are to be revealed),
the distribution of measured data points relative to a target optimized region, the capture of relevant control
attributes, the absence of transcription errors and outliers, and the low-noise / high-reproducibility measurement
of predictive output targets.

* An underlying process that is well-approximated as a ‘“black box” data generator A black box data
generator returns values sampled from a function with unknown structure; in particular, information about
the underlying function is gained exclusively from sequential queries of the black box. Returned values
from the black box may further be corrupted by stochastic noise, also of an unknown form. In situations
in which data sampling is unconstrained (i.e., experimental data points can be collected inexpensively or a
low-computational-cost / high-fidelity simulator exists), an empirically-driven Al approach may inefficiently
optimize the underlying process in comparison to algorithms that explicitly leverage high frequency sampling
(Droste et al.|[2002)). Other situations (e.g., ones in which experimental observations are expensive to obtain,
ones in which the underlying data generating process is complex and difficult to simulate from first principles,
ones in which the underlying relationships are nonlinear functions of many control attributes) are more
conducive to Al approaches.

A specific class of applications that satisfies these desiderata is complex process optimization, where the goal is to
achieve precise (e.g., atomic-level, cellular-level, etc.) control over the properties of a final material or product/Skarlinski
et al.,[2024, Such processes often involve fabricating intricate multi-dimensional arrangements of constituent materials.
This level of control typically requires a sequence of tightly-coupled physical and chemical transformation steps. These
interactions are highly complex, often comprising the creation of reactive species, their transport to a substrate, a series
of surface interactions like adsorption and chemical bonding, and the subsequent removal of product species, all while
managing unwanted side effects like the re-deposition of byproducts Taylor et al., [2022|

These processes often involve a variety of complex kinetics and reaction mechanisms that span a vast range of length
scales|Chaves et al., [2024, The system’s environment is frequently highly non-linear, with many components existing
in non-equilibrium thermodynamic states |Shaw et al., 2024, The system dynamics can be non-local, where energy
imparted in one location affects interactions at remote locations, and the process outcomes can depend sensitively on
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small changes in control parameters. A full characterization of such a process from first principles is often intractable,
as it would require precise knowledge of the spatio-temporal distributions and energy states of all constituent species,
their production and loss rates, the effective field distributions, and the rates of all surface chemical reactions under
dynamic bombardment by various particles (Jones, [2025]).

These fundamental complexities compound the challenge of deploying process optimization routines in a high-volume
manufacturing environment, as the remedies for variation across nominally identical tools are difficult to uncover (i.e.,
the process transfer and matching problem) (Megat et al., 2023). While significant progress has been made in modeling
such processes from first principles, these efforts inevitably involve simplifying assumptions that trade modeling fidelity
for computational feasibility. As an alternative, black-box methods can be employed |Hamilton et al., 2024, The efficacy
of these efforts depends primarily on the availability of a high-quality central database and secondarily on strategies for
digesting that data into leverageable predictive models. In many mature R&D-intensive fields, the requisite investment
in data generation has likely already been made over decades of experimentation; future market value will be captured
by entities who invest in the data engineering required to warechouse that data in an easily queryable, high-quality central
database.

In this paper, a variety of strategies for enhancing the efficacy of Al approaches are discussed. While the strategies
described are general, specific reference will sometimes be made to domain specific process optimization (e.g., materials
discovery, small-molecule discovery, assay development, etc.) in order to ground the discussion in a concrete example
that the authors believe is well-suited for Al techniques. Section [2] discusses strategies for conducting designs of
experiment, with the intent of highlighting general aspects of generated data sets that hasten the optimization rate
under a data-science-driven approach. Section [3|reviews strategies for using the acquired data (at any stage of the
data acquisition process) in order to construct predictive models that can be leveraged for optimization. As will be
emphasized, the modeling strategies employed assume that the underlying data generation process is a black box, and
so the modeling strategies employed must have the capacity to fit to arbitrary relationships (i.e., the parametric model
forms must be universal function approximators) without overfitting to latent noise of an unknown form. Finally, Section
presents strategies for using models in tandem with desired target objectives in order to recommend subsequent
experiments; in particular, the discussion will focus on recommendation strategies that employ a suitable objective
function in order to quantitatively compare candidate experiments, perform utility maximization (equivalently, objective
function minimization) in order to propose candidate experiments, and iteratively update models based on results from
those optimized candidates.

2 Sampling Strategies (i.e., Design of Experiments)

In order to employ Al strategies for optimization, one can begin by formulating the optimization as the solution to a
suitable minimization problem. The mathematical formulation requires defining a suitable mathematical notation, so let
us define:

* & as each individual experiment; & is a d-dimensional vector (i.e., there are d input control attributes), and so
each experiment & belongs to the d-dimensional vector space R¢;

* X as the input feature space (i.e., X is the entire hypervolume of possible experiments); X’ is generally a
subspace of R?;

* 4 as the outcome of an individual experiment; ¥ is a k-dimensional vector (i.e., there are k outcomes of each
experiment), and so the results of each experiment % belong to the k-dimensional vector space R¥;

* Yiarget as the target outcome of the optimization process; Yrarget € R is also a k-dimensional vector;

. f}(:f:) as a best-fit predictive model; f_'(;(:/ﬁ) is a function that maps a candidate experiment & € R? to an
estimated outcome f}(f) € R¥ and is parameterized by a set of p model parameters ) (i.e., fc RP) that are
determined based on the training data set; and

—

e L (a’:’, f (&), gta,.get> as the objective function (also called a loss or a cost function); £ (dc', f (@), gtarget) isa

function that maps a candidate experiment & € RY, an estimated outcome of that experiment fg(i) € R¥, and

a desired optimization outcome Yarget € R to a scalar number that represents a quantitative estimate of how
“bad” that candidate recipe is (i.e., better recipes have lower losses, and a recipe that meets all optimization
targets has zero loss).

With this notation, the optimization problem can be formulated mathematically as
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Z* = argmin £ (:if, (;(5)7?jtargct) ; M
TeX

in words, an optimized experiment &* is the set of control attributes (of all possible input combinations in X’) that
minimizes the loss function according to the best-fit model f(;(a?) and a desired target outcome ¥arges.

The first step of solving this minimization problem involves initial data acquisition, requiring an initial sampling strategy.
In the context of a specific application, the sampling strategy may be (and, traditionally, has been) within the purview
of a domain expert (e.g., dictated by the informed reasoning of an expert process engineer); in such a context, the
sampling strategy may be referred to as a design of experiments (DoE). If available, domain knowledge can and should
be leveraged in the course of sampling strategy design; the primary mechanisms by which such domain knowledge can
hasten a data-science-driven optimization is 1) by identifying and sampling within regions near to the optimization
target region (which minimizes the degree of extrapolation required of the data-science-driven recommendations) and 2)
by defining the extent of the viable search region (confining the input feature space more compactly filters out unviable
regions from being modeled and proposed; however, the domain expert should be careful not to confine the viable space
so compactly as to disregard unconventional but potentially fruitful search regions).

Beyond these application-specific observations, additional considerations about the sampling strategy that facilitate
model learning and optimization include roughly equidistant spacing between data points, data sampling of a sufficient
density to fully span the relevant input feature space, and multivariate sampling. These conditions ensure that distinct
regions of input space are neither under- nor over-sampled, that the distance between the sampled region and the target
optimization region is not too large (i.e., minimizes optimization extrapolation), and that models learn the marginal
effect of each individual input attribute on the predictive outcomes. Data sets satisfying these conditions are well-studied
in the field of quasi-random methods for numerical integration and are called low-discrepancy sets (so-called because
such a sampling distribution minimizes the discrepancy with sampling from a uniform distribution over all input
features) (Antonov and Saleevl 1979, Bratley et al., 1992 [Faure| 1981 |Halton, [1960, McKay et al., 1979 |Sobol', |{1967).

Another important aspect of the sampling strategy is that some input attributes matter more than others, but which inputs
matter most (and their quantitative relative importances) are often unknown before optimization begins and may change
depending on the portion of input space under consideration. In light of this, if the sampling strategy is not multivariate,
the convergence rate of the optimization routine will be suppressed due to the curse of dimensionality (the amount
of suppression will be exponential in the number of unimportant input attributes). Efficient sampling strategies must
therefore space-fill over both the full input space and also over arbitrary subspaces of the full input space; examples of
such space-filling methods are multivariate random sampling and quasi-random sampling (Bergstra and Bengiol 2012).
Efficiency gains from multivariate random and quasi-random sampling methods are particularly large in the context of
underlying relationships that, while embedded in a high dimensional input space, possess a low effective dimensionality
(Caflisch et al., |1997, [Wang et al.,|[2016).

A natural concern that may arise when contemplating data acquisition strategies regards the optimization convergence
rate and its dependence on the sample size, particularly if experimental observations are costly and/or time consuming
to collect. Unfortunately, the number of observations in isolation is inadequate for specifying the quality of a data set;
characteristics including the proximity of the sampled region to the target region, the absence or presence of sampling
bias, the absence or presence of significant measurement error, the complexity of the latent relations in the data, and the
degree of multivariate input sampling are all at least as important as sample size in characterizing the quality of the data
set and enabling predictive models to learn underlying data patterns for the purposes of optimization. Which initial
data acquisition strategy accelerates the optimization convergence rate the most is application-dependent, depending
further on additional modeling and optimizing strategies. The best context-independent statements are those from the
preceding paragraphs, namely that sampling strategies should leverage domain knowledge, space-fill the relevant input
feature space, sample the input control attributes multivariately, and yield a low-discrepancy data set; these aspects
essentially lower-bound the worst case performances of data-driven approaches deployed in an arbitrary application. It
should also be noted that a myopic focus on minimizing the number of experimental observations prior to deploying Al
methods is at odds with the Al ethos—AI requires data! For this reason, applications where such historical data has
already been collected are the best poised for leveraging the tools of Al If a historical database is for some reason
unavailable, approaches to optimization may then need to be adapted to rely more heavily on theoretical models driven
from first principles and other kinds of domain knowledge (although the results from such adaptations are likely to be
contingent upon the particular application and difficult to scale).
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3 Modeling Strategies

Solving the optimization problem formulated in Equation (T)) requires a best-fit predictive model f;;(a?), i.e., a nonlinear
regression model (also referred to in the statistics literature as a response surface (Jones et al., [1998)) parameterized by

model parameters d that are determined based on the training data set produced by the sampling strategy. While there
are many options available for the parametric form of the model, some desiderata include:

* Conformability to arbitrary underlying relationships in the data set Given that the latent underlying
relationships in the data are generally nonlinear and arbitrarily complex, the parametric model form (by virtue
of suitable tuning of model fit parameters) should be a universal function approximator. Neural networks
are one such model form (Cybenkol 1989, |Hornik, |1991), but other options in this class include Gaussian
process regressors (Rasmussen and Williams, [2006) and regression trees (Breiman et al.|[2017). In addition to
choosing a particular (or ensemble) of such universal approximators, training such a model generally involves
making additional supplementary model choices (e.g., choosing a kernel for a Gaussian process regressor)
and determining appropriate hyperparameters (e.g., via cross-validation (Hastie et al.,|2001), grid search, or
manual tuning).

* Generalizability beyond training data set Despite being conformable to arbitrary relationships contained
within the data, predictive models should be resilient against fitting to latent noise contained in the training data
(i.e., avoid overfitting). Overfitting is present when the predictive model learns patterns that are more reflective
of the particularities of the training set than genuine causal relationships between input control attributes and
target outputs; accordingly, overfitting can be identified when model training error is significantly smaller
than model error on a holdout validation set. Techniques for minimizing the presence and adverse effects of
overfitting during model training include cross-validation, regularization, and early stopping (Goodfellow
et al.,[2016).

* Ability to compute calibrated probabilistic uncertainty estimates In addition to making accurate predictions
about the mean output target values conditioned on a particular set of input control values, the predictive
model should also produce calibrated uncertainty estimates (i.e., prediction intervals at a specified probability
coverage) associated with those predictions. Such uncertainty intervals are particularly important for navigating
the exploration-exploitation trade off when leveraging the predictive models for optimization (Brochu et al.
2010} |Shahriari et al., [2016)). Standard methods for constructing such calibrated prediction intervals include
the delta method (Seber and Wild, |1989)) or bootstrapping (e.g., the pairs bootstrap method (Efronl|1979) or the
wild bootstrap method (Wu, |1986))). Other techniques for prediction interval construction include variational
inference (Fox and Roberts| 2011} [MacKayl [2002) and deep ensembling (Lakshminarayanan et al.l 2017}
Wilson and Izmailov, 2020). There are also classes of models that directly learn both mean and variance output
regression functions during training (Nix and Weigend, |1994] Russell and Reale, [2019), such that prediction
intervals can be directly estimated at inference time.

* Adaptability to known data structure If the data possesses known structure (e.g., via a priori domain
knowledge), it can hasten the convergence of the fitting routine to an accurate predictive model if those
structures can be leveraged by incorporation in the parametric model form. For example, experiments in most
scientific, engineering, and manufacturing industries are rarely as simple as setting a single array of control
inputs and retrieving an experimental outcome; instead, a time-ordered sequence of control inputs spanning
multiple steps may be required to complete the experiment. In this instance, model architectures that are
specifically adapted for learning such sequentially-ordered patterns (e.g., recurrent neural networks (Rumelhart
et al.,|1986)), long short term memory networks (Hochreiter and Schmidhuber, [1997), sequence-model-based
autoencoders for learning a fixed-size embedding (Dai and Lel 2015| |Goodfellow et al.,[2016] [Pei and Tax|,
2018\ [Sagheer and Kotbl| 2019), ordinary differential equation networks (Chen et al., 2018))) may improve
the generalization performance of the predictive models fit to that data. As a second example, for data
that possesses spatial structure, parametric model forms that can learn such spatial correlation (e.g., spatial
econometric models (Anselin, [1988)), including geographically weighted neural networks (Hagenauer and
Helbich, 2021))) may be particularly well-suited.

* Differentiability with respect to model parameters and with respect to input control features Calculus-
based methods are particularly efficient algorithms for model training and optimization; in both instances, a
suitable objective function is defined and numerical optimization of that loss function is performed, typically
via a gradient descent, conjugate gradient, or quasi-Newton method (Nocedal and Wright, [2006)). Such methods
involve differentiating the loss function with respect to model parameters (for model training) or inputs (for
optimization), and so the base architecture itself must be differentiable with respect to these quantities. If a
calculus-based optimization routine is not employed (e.g., derivative-free optimization (Conn et al., [2009)),
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the differentiability requirement can be relaxed; however, physical processes are generally differentiable, and
so failure to impose the differentiability constraint enables training data-driven models that evince unphysical
(e.g., non-smooth) behavior.

While producing models with higher predictive accuracy presumably enables better recommendations during optimiza-
tion, obtaining such high fidelity models is not the primary objective of a data-science-driven optimization routine. In
particular, if the cost of obtaining such highly accurate predictive models is excessive (expensive) experimental observa-
tions, then a fixation on model predictive accuracy may actually increase the number of experiments before successful
optimization (minimizing the number of such required experiments is the primary objective of a data-science-driven
optimization process). Instead of focusing on model test error within the optimization loop, the data-science-driven
approach trades high fidelity models for statistical forecasts; generating predictions from a statistical model (with
calibrated prediction intervals) enables the rapid identification of fruitful regions of the input feature space in order to
accelerate optimization.

As a concluding comment in this section, it should be noted that Equation (1) is not the only possible formulation of
the optimization problem; in particular, there are formulations wherein a best-fit predictive model need not be learned
at all. These methods generally fall into a class of kernel density estimation methods (Hastie et al., 2001, |Parzen|
1962)). For example, tree-structured Parzen estimators (Bergstra et al.l 2011) are a type of non-parametric kernel density
estimator that learns two density distributions (corresponding to partitions of the training data into better and worse
observations); these distributions can then be used during optimization to suggest points closer to the distribution of
better data observations and/or further away from the worse data observations without the need for a predictive model at
all. A major downside of this approach, however, is that by explicitly eschewing attempts to learn a predictive model,
no insight can be gleaned as to the marginal impact of select control inputs on desired target outputs (such Jacobian
information requires explicit differentiation of a predictive model or approximations thereof). These marginal impacts
(sometimes referred to as sensitivities) are often helpful for the purposes of model diagnostics and exploratory data
analysis.

4 Optimizing Strategies

In the setting of Equation|[I] optimization is equivalent to minimization of a suitable objective function. The objective
function reduces experimental outcomes (or estimates of experimental outcomes under the model) to a scalar cost
measure, with zero cost corresponding to an outcome that achieves all the optimization objectives. Examples of
constituent terms within the objective function include a distance measure between predicted outcomes and target
outputs, an uncertainty measure that penalizes (or favors) candidate inputs associated with uncertain predictions, or
a monetary cost measure associated with each input candidate. In general, the objective function is presumed to be
expensive to evaluate experimentally; it may further lack a known closed-form, may constitute a stochastic random
variable (i.e., observations of the objective function may be corrupted by observation noise, itself deriving from an
unknown stochastic noise distribution), and may possess unknown differentiability properties (and, in general, derivative
information may only be estimated from sampled observations). Further, the minimization problem formulated in
Equation [I]is generally non-convex, and so the optimization is generally an NP-hard problem (Jain and Kar, [2017).

Within this setting, Bayesian optimization encompasses a variety of iterative strategies for minimizing the cost function.
In terms of the number of iterations (i.e., experimental function evaluations) required to find the minimum of the
cost function, Bayesian optimization strategies are among the most efficient (Brochu et al.| 2010, Jones|, 2001}, Jones
et al.| |1998| [Mockus, |1994| [Streltsov and Vakilil |1999), where the efficiency results from the incorporation (via Bayes’
theorem) of information from prior beliefs and sequentially-updated observations to guide the sampling strategy, update
the surrogate model, and trade off exploration and exploitation over the input feature space. Having already implemented
an initial sampling and a modeling strategy, Bayesian optimization follows the principle of maximum expected utility
(equivalently, the principle of minimum expected risk (Vapnikl, [1991))) for proposing the next sample, which requires a
choice of a suitable utility function (also referred to as an acquisition function) and a means of optimizing the expected
value of this utility with respect to the posterior distribution of the cost function. Acquisition functions are defined such
that high utility corresponds to low values of the cost function, either because 1) the estimated cost function value at a
candidate input is low, 2) the uncertainty associated with the cost function estimation value at a candidate input is high
(and with a substantial probability of obtaining a low value), or 3) both 1) and 2). Examples of acquisition functions
discussed in the literature include:

* probability of improvement (Kushner, |1964), wherein input candidates are ranked based on the estimated
probability that the mean outcome associated with those inputs will improve upon the best observed sample so
far;
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Strategy

Optimizing Modeling
Strategy Strategy

Figure 1: The sequential model-based optimization feedback loop. In the first step, an initial sampling strategy is
employed to obtain a suitable initial data set, conforming to the conditions described in Section|2] In the second step, a
modeling strategy is employed, which leverages the data set to produce a predictive model (Section [3). In the third step,
an optimizing strategy is employed, which leverages the data set and the trained models to produce optimized input
candidates. Experimental observations obtained from proposed inputs are then added to the data set and the loop run
anew, terminating upon convergence.

* expected improvement (Mockus et al [1978), wherein input candidates are ranked based on both the estimated
probability that the mean outcome will improve on the best observed sample so far and the estimated magnitude
of improvement of the mean outcome over the best observed sample so far;

* upper confidence bound (Auer, 2002} |Auer et al., 2002, Kocsis and Szepesvari, |2006, [Srinivas et al.| 2010),
wherein input candidates are ranked based on the probability that 68% of estimated outcomes for that input
(i.e., outcomes within +1¢ of the estimated mean outcome) will improve upon the best observed sample so
far; and

* GP-Hedge (Hoffman et al.}[2011), a portfolio strategy that utilizes multiple acquisition functions and adapts
dynamically based on which acquisition functions propose better candidates throughout the optimization
procedure.

In a general setting, there is no acquisition function that can be guaranteed to perform best in optimizing the cost
function (Hoffman et al.| 201 1)); which acquisition function will perform best in any particular optimization process
is highly application specific, and the differences between optimization convergence rates under different acquisition
functions are unlikely to be statistically significant. While the formulation in Equation[I]and most of the discussion
has presumed, for simplicity, that a single input condition is proposed as an optimized candidate at each iteration of
optimization, the approach can generally be extended to propose any number of input candidates at each iteration and to
plan multiple steps ahead during optimization (Azimi et al., 2010, Brochu et al., 2010} |Garnett et al., 2010). Once initial
sampling, modeling, and optimizing strategies have been specified, the combination can feedback on itself within an
iterative loop (sometimes referred to in the literature as sequential model-based optimization (Hutter et al.,[2011)), as
schematically depicted in Figure

5 Conclusion

The variety of domains in which AI approaches have made dramatic advances (including computer vision (Krizhevsky
et al., 2012} Szegedy et al., [2015), natural language processing (Sutskever et al., 2014} |Vaswani et al., 2017), and
reinforcement learning (Silver et al.l 2017)) motivates further efforts to develop new Al capabilities and to apply
them in increasingly diverse domains. The authors share in the collective enthusiasm for the potential impact of
these tools. Despite this excitement, Al is not a panacea. For Al driven approaches to yield robust insights and
accelerated optimizations, data must be available as the basis for the analysis, or else additional information must be
brought to bear (e.g., a priori knowledge, simulation, knowledge engineering, physical or empirical laws). In order
for Al techniques to generalize well, the data must be well-curated, test data must be similar to training data, and
the underlying patterns themselves should be approximately stable (i.e., well-approximated as a stationary stochastic
process). Even in situations in which data generation is imperfect, though, AI approaches can still guide aspects
of the sampling, modeling, and optimizing strategies; indeed, such situations are especially likely to benefit from
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Al techniques, particularly in comparison to ad hoc approaches that ignore aspects of the available data. While Al
approaches can support analyses at any stage of the sequential model-based optimization feedback loop, their real
power is harnessed in situations where domain knowledge can be synergistically matched with a high quality historical
database. The authors are particularly enthusiastic about the sequential model-based optimization framework presented
herein, noting its universal applicability across domains and its inherent scalability throughout the entire R&D and
manufacturing life-cycle. This framework is equally adept at navigating the high-dimensional parameter space of initial,
small-scale, high-throughput screening as it is at fine-tuning the process parameters of capital-intensive, large-scale
production. At each stage, the process can be treated as an expensive black-box function, making it an ideal candidate
for this data-efficient optimization strategy.
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